Evaluasi Pegaruh Perlakuan Nitridasi Gas Temperatur Tinggi Terhadap Pertumbuhan Butir Baja Tahan Karat 316L dan 316LVM

  • Agus Suprihanto Universitas Diponegoro
Keywords: austenitic stainless steel, high temperature gas nitrogen, grain growth


High temperature gas nitriding is a thermochemical treatment method that promises many advantages of improved mechanical properties and corrosion resistance of stainless steels. However, this treatment causes excessive grain growth. It is therefore necessary to evaluate the effect of such treatment on grain growth phenomenon on stainless steel. High temperature gas nitriding for 316L and 316LVM austenitic stainless steels has been successfully performed. The applied heating temperature is 1050, 1100 and 1200 0C with nitrogen gas pressure of 0.3 atm. The heating duration is set at 15 and 30 minutes. Observation of microstructure using metallographic microscope and grain measurement using particle analysis from ImageJ software. The test results showed that the grain growth constant (n) of 1.66, the growth rate of the grains (K) of 99 μm / s and the activation energy (Q) of 55.209 kJ / mol.


1. Uggowitzer, P.J., Magdowski, R. dan Spidel, M.O., 1996, Nickel Free High Nitrogen Austenitic Stainless Steel, ISIJ International, 36(7): 901-908.
2. Yang, K., dan Ren, Y., 2010, Nickel Free Austenitic Stainless Steel for Medical Application, Science and Technology of Advanced Material, 11: 1-13.
3. Desai, S., Bidanda, B. dan Bartalo, P., 2008, Metallic and Ceramic Biomaterial: Current and Future Developments, dalam Bartolo, B. dan Bidanda, B., editor 2008, Bio-Materials and Prototyping Applications in Medicine, Springer Science.
4. Ahmadi, S., Arabi, H., Shokuhfar, A., dan Rezer, A., 2009, Evaluation of the Electroslag Remelting Process in Medical Grade of 316LC Stainless Steel, Journal of Materials Science and Technology, 25(5): 592-596.
5. Berns H dan Siebert S, 1996, High Nitrogen Austenitic Cases in Stainless Steels, ISIJ Int 1996;36(7):927–31
6. Nosey, L., Farina, S., Avalos, M., Nachez, L., Gomez, B.J. dan Feugeas, J., 2008, Corrosion Behavior of Ion Nitrided AISI 316L Stainless Steel, Thin Solid Film, 516: 1044-1050.
7. Gil, L., Bruhl, S., Jimenez, L., Leon, O., Guevara, R. dan Staia, M.H., 2006, Corrosion Performance of the Plasma Nitrided 316L Stainless Steel, Surface and Coating Technology, 201: 4424 – 4429.
8. Dionisyo, M.O., Campos, M., Higa, O.Z., Cunha T.E. dan de Souza, S.D., 2013, Investigating the Correlation Between Some of The Properties of Plasma Nitrided AISI 316L Stainless Steel, Material Research, 16(5): 1052- 1057.
9. Martinesi, M., Bruni, S., Stio, M., Treves, C., Bacci, T. dan Borgioli, F., 2007, Biocompatibility Evaluation of Surface Treated AISI 316L Ausenitic Stainless Steel in Human Cell Cultures, Journal of Biomedical and Material Research, 80: 131-145.
10. Wood, T.O., 2002, MRI Safety and Compatibility of Implants and Medical Devices, dalam Winter, G.L., dan M.J. Nutt, editor, Stainless Steel for Medical and Surgical Applications, ASM Special publication.
11. Shellock, F.G., 2002, Biomedical Implants and Devices: Assesment of Magnetic Field Interaction With a 3.0- Tesla MR System, Journal of Magnetic Resonance Imaging, 16: 721-732.
12. Menendez, E., Martinavicius, A., Liedke, M.O., Abrasonis, G., Fassbender, J., Sommerlatte, J., Nielsch, K., Baro, M.D., Nogues, J. dan Sort, J., 2008, Patterning of Magnetic Structure on Austenitic Steel by Local Ion Beam Nitriding, Acta Materialia, 56: 4570-4576.
13. Ozturk, O., Okur, S. dan Riviere, J.P., 2009, Structural and Magnetic Characterization of Plasma Ion Nitrided Layer on 316L Stainless Steel Aloy, Nuclear Instruments and Methods in Physics Research B, 267: 1540-1545.
14. Basso, R.L.O., Pimentel, V.L., Weber, S., Marcos, G. dan Czewiec, T., 2009, Magnetic and Structural Properties of Ion Nitrided Stainless Steel, Journal of Applied Physics, 105:124914-1-124914-5.
15. Kumar, R., Lerski, R.A., Gandy, S., Clift, B.A. dan Abboud, R.J., 2006, Safety of Orthopedic Implans in Magnetic Resonance Imaging: An Experimental Verification, Journal of Orthopaedic Research, 24: 1799-1802.
16. Holton, A., Walsh, E., Anayiotos, A., Pohost, G. dan Venugopalan, R., 2002, Comparative MRI Compatibility of 316L Stainless Steel Alloy and Nickel-Titanium Alloy Stent, Cardiovascular Magnetic Resonance, 4(4): 423-430.
17. Kuroda, D., Hanawa, T., Hibaru, T., Kuroda, S. dan Kobayashi, M., 2003, New Manufactuting Process of Nickel Free Austenitic Stainless Steel with Nitrogen Absorption Treatment, Material Transaction, 44(3): 414-420.
18. Hirota, N., Yin, F., Inoue, T. dan Azuma, T., 2008, Recrystalization and Grain Growth Behavior in Severe Cold Rolling Deformed SUS316L under Anisothermal Annealing Condition, ISIJ Internasional, 48(4): 475-482.
19. Kasyap, B.P. dan Tangri, K., 1992, Grain Growth Behaviour of Type 316L Stainless Steel, Materials Science and Engineering A, A149: L13-L16.
How to Cite
Suprihanto, A. (2018). Evaluasi Pegaruh Perlakuan Nitridasi Gas Temperatur Tinggi Terhadap Pertumbuhan Butir Baja Tahan Karat 316L dan 316LVM. Jurnal Metalurgi Dan Material Indonesia, 1(1), 37-41. Retrieved from https://www.materialmetalurgi.id/index.php/JMMI/article/view/9
Artikel Ilmiah